
Programming in Python

Sarath Babu

Session-II

Indian Institute of Space Science and Technology

Thiruvananthapuram, Kerala, India 695547

8
th
August, 2019

IEEE Student Branch IIST

Outline for today

1 Control Structures

2 Functions

3 Exceptions

4 File Handling

5 Object Oriented Programming

6 Modules

Sarath Babu Python Programming 8
th

August, 2019 2/24

Control Structures Decision Making

Conditions

if
>>> if expression:

statements

if . . . else
>>> if expression:

statements

else:

statements

if . . . elif . . . else
>>> if expression:

statements

elif expression:
statements

else:

statements

>>> a = 2

>>> b = 2

>>> if a == b:

print(‘a=b’)

>>> a = 2

>>> b = 4

>>> if a > b:

print(a)

else:

print(b)

>>> a = 2

>>> b = 4

>>> c = 3

>>> if a > b and a > c:

print(a)

elif b > a and b> c:

print(b)

else:

print(c)

Sarath Babu Python Programming 8
th

August, 2019 3/24

Control Structures Decision Making

Conditions

if
>>> if expression:

statements

if . . . else
>>> if expression:

statements

else:

statements

if . . . elif . . . else
>>> if expression:

statements

elif expression:
statements

else:

statements

>>> a = 2

>>> b = 2

>>> if a == b:

print(‘a=b’)

>>> a = 2

>>> b = 4

>>> if a > b:

print(a)

else:

print(b)

>>> a = 2

>>> b = 4

>>> c = 3

>>> if a > b and a > c:

print(a)

elif b > a and b> c:

print(b)

else:

print(c)

Sarath Babu Python Programming 8
th

August, 2019 3/24

Control Structures Iteration

Loops

while
>>> while expression:

statements

for
>>> for varibale in sequence:

statements

>>> i = 0

>>> while i <= 10:

print(i)

i = i + 2

>>> n = range(0, 11, 2)

>>> for i in n:

print(i)

>>> for i in range(11):

print(i)

break
>>> i = 0

>>> while i <= 10:

if i == 7:

break

print(i)

i = i + 1

continue
>>> i = 0

>>> while i <= 10:

if i == 7:

i += 2

continue

print(i)

i = i + 1

Sarath Babu Python Programming 8
th

August, 2019 4/24

Control Structures Iteration

Loops

while
>>> while expression:

statements

for
>>> for varibale in sequence:

statements

>>> i = 0

>>> while i <= 10:

print(i)

i = i + 2

>>> n = range(0, 11, 2)

>>> for i in n:

print(i)

>>> for i in range(11):

print(i)

break
>>> i = 0

>>> while i <= 10:

if i == 7:

break

print(i)

i = i + 1

continue
>>> i = 0

>>> while i <= 10:

if i == 7:

i += 2

continue

print(i)

i = i + 1

Sarath Babu Python Programming 8
th

August, 2019 4/24

Control Structures Iteration

Loops

while
>>> while expression:

statements

for
>>> for varibale in sequence:

statements

>>> i = 0

>>> while i <= 10:

print(i)

i = i + 2

>>> n = range(0, 11, 2)

>>> for i in n:

print(i)

>>> for i in range(11):

print(i)

break
>>> i = 0

>>> while i <= 10:

if i == 7:

break

print(i)

i = i + 1

continue
>>> i = 0

>>> while i <= 10:

if i == 7:

i += 2

continue

print(i)

i = i + 1

Sarath Babu Python Programming 8
th

August, 2019 4/24

Functions Functions

Functions

Method to divide program into reusable modules

Uses pass-by-reference for arguments

Function Definition

>>> def function name(args):

statements

.

.

.

return obj

Function Call

>>> val = function name(args)

>>> def add(a, b):

c = a + b

return c

>>> val = add(2, 3)

>>> print(val)

>>> p = 4

>>> q = 3

>>> print(add(p, q))

Sarath Babu Python Programming 8
th

August, 2019 5/24

Functions Introduction

Exceptions

Unexpected behavior during a program execution

On exception, Python script stops execution

Handled using try . . . except . . . finally statements

try: code with the chance of exception

except: the code for handling the exception
finally: code that executes irrespective of exception

>>> a = int(input(‘Enter a: ’))

>>> b = int(input(‘Enter b: ’))

>>> try:

c = a / b # Code prone to exception

except ZeroDivisionError:

print(‘Division with 0’) # Executes only on exception

finally:

print(‘Program ended’) # Code always work

Sarath Babu Python Programming 8
th

August, 2019 6/24

Functions Introduction

Exceptions

Unexpected behavior during a program execution

On exception, Python script stops execution

Handled using try . . . except . . . finally statements

try: code with the chance of exception

except: the code for handling the exception
finally: code that executes irrespective of exception

>>> a = int(input(‘Enter a: ’))

>>> b = int(input(‘Enter b: ’))

>>> try:

c = a / b # Code prone to exception

except ZeroDivisionError:

print(‘Division with 0’) # Executes only on exception

finally:

print(‘Program ended’) # Code always work

Sarath Babu Python Programming 8
th

August, 2019 6/24

Exceptions

“If debugging is the process of removing so�ware bugs, then programming must be the

process of pu�ing them in.” – Edsger Dijkstra

Sarath Babu Python Programming 8
th

August, 2019 7/24

File Handling Introduction

Files

Way of storing data in permanent storage

File operations

1 open

2 read/write

3 close

Opening a file
>>> file ptr = open(filename, mode)

File modes

r Read mode

w Write mode (New file will be created if the file does not exists. If the file already exists, it will be overwri�en)

a Append mode (New file will be created if the file does not exists. If file already exists, the data is appended to the file)

r+ Reading + writing

Other modes: rb, rb+, wb, w+, wb+, ab, ab+

Sarath Babu Python Programming 8
th

August, 2019 8/24

File Handling Input/Output

Files cont’d

Reading from a file
1 >>> file ptr.read(size)

2 >>> file ptr.readline(size)

3 >>> file ptr.readlines()

4 Using for loop

1 Alice

2 Bob

3 Eve

4 John

data.txt

>>> fp = open(‘data.txt’, ‘r’)

>>> while True:

s = fp.read(10)

print(s)

if not s:

break

>>> fp.close()

>>> fp = open(‘data.txt’, ‘r’)

>>> for line in fp:

print(line)

>>> fp.close()

>>> fp = open(‘data.txt’, ‘r’)

>>> lines = fp.readlines()

>>> fp.close()

>>> print(lines)

Sarath Babu Python Programming 8
th

August, 2019 9/24

File Handling Input/Output

Files cont’d

Reading from a file
1 >>> file ptr.read(size)

2 >>> file ptr.readline(size)

3 >>> file ptr.readlines()

4 Using for loop

1 Alice

2 Bob

3 Eve

4 John

data.txt

>>> fp = open(‘data.txt’, ‘r’)

>>> while True:

s = fp.read(10)

print(s)

if not s:

break

>>> fp.close()

>>> fp = open(‘data.txt’, ‘r’)

>>> for line in fp:

print(line)

>>> fp.close()

>>> fp = open(‘data.txt’, ‘r’)

>>> lines = fp.readlines()

>>> fp.close()

>>> print(lines)

Sarath Babu Python Programming 8
th

August, 2019 9/24

File Handling Input/Output

Files cont’d

Reading from a file
1 >>> file ptr.read(size)

2 >>> file ptr.readline(size)

3 >>> file ptr.readlines()

4 Using for loop

1 Alice

2 Bob

3 Eve

4 John

data.txt

>>> fp = open(‘data.txt’, ‘r’)

>>> while True:

s = fp.read(10)

print(s)

if not s:

break

>>> fp.close()

>>> fp = open(‘data.txt’, ‘r’)

>>> for line in fp:

print(line)

>>> fp.close()

>>> fp = open(‘data.txt’, ‘r’)

>>> lines = fp.readlines()

>>> fp.close()

>>> print(lines)

Sarath Babu Python Programming 8
th

August, 2019 9/24

File Handling Input/Output

Files cont’d

Reading from a file
1 >>> file ptr.read(size)

2 >>> file ptr.readline(size)

3 >>> file ptr.readlines()

4 Using for loop

1 Alice

2 Bob

3 Eve

4 John

data.txt

>>> fp = open(‘data.txt’, ‘r’)

>>> while True:

s = fp.read(10)

print(s)

if not s:

break

>>> fp.close()

>>> fp = open(‘data.txt’, ‘r’)

>>> for line in fp:

print(line)

>>> fp.close()

>>> fp = open(‘data.txt’, ‘r’)

>>> lines = fp.readlines()

>>> fp.close()

>>> print(lines)

Sarath Babu Python Programming 8
th

August, 2019 9/24

File Handling Input/Output

Files cont’d

Writing to a file
>>> file ptr.write(string)

Closing a file
>>> file ptr.close()

>>> fp = open(‘data.txt’, ‘w’)

>>> fp.write(‘5 Miller’)

>>> fp.close()

5 Miller

data.txt

>>> fp = open(‘data.txt’, ‘a’)

>>> fp.write(‘5 Miller’)

>>> fp.close()

1 Alice

2 Bob

3 Eve

4 John

5 Miller

data.txt

Sarath Babu Python Programming 8
th

August, 2019 10/24

Object Oriented Programming

“Object-oriented programming o�ers a sustainable way to write spaghe�i code. It lets

you accrete programs as a series of patches.” – Paul Graham

Sarath Babu Python Programming 8
th

August, 2019 11/24

http://www.paulgraham.com/

Object Oriented Programming Introduction

Object oriented thinking

World can be considered as collection of objects
Object⇒ A�ributes + Functions
Properties of objects

Encapsulation

Polymorphism

Inheritance

Abstraction

Figure 1: Real-world objects

Sarath Babu Python Programming 8
th

August, 2019 12/24

Object Oriented Programming Introduction

Object oriented thinking

World can be considered as collection of objects
Object⇒ A�ributes + Functions
Properties of objects

Encapsulation

Polymorphism

Inheritance

Abstraction

Figure 1: Real-world objects

Sarath Babu Python Programming 8
th

August, 2019 12/24

Object Oriented Programming Introduction

How to realize objects in Python?

Objects are defined using the keyword class
Definition can be visualized as the mould for creating objects

Class definition consists of

1 A�ributes (Data members)

2 Functions (Methods)

Object Definition
>>> class ClassName:

Data members

.

.

.

Method definitions

Object Creation
>>> object = ClassName()

>>> class Student:

def init (self):

self.rollno = None

self.name = None

>>> s1 = Student()

>>> s1.rollno = 2

>>> s1.name = ‘Alice’

2

‘Alice’

s1

rollno

name

Sarath Babu Python Programming 8
th

August, 2019 13/24

Object Oriented Programming Introduction

How to realize objects in Python?

Objects are defined using the keyword class
Definition can be visualized as the mould for creating objects

Class definition consists of

1 A�ributes (Data members)

2 Functions (Methods)

Object Definition
>>> class ClassName:

Data members

.

.

.

Method definitions

Object Creation
>>> object = ClassName()

>>> class Student:

def init (self):

self.rollno = None

self.name = None

>>> s1 = Student()

>>> s1.rollno = 2

>>> s1.name = ‘Alice’

2

‘Alice’

s1

rollno

name

Sarath Babu Python Programming 8
th

August, 2019 13/24

Object Oriented Programming Introduction

How to realize objects in Python?

Objects are defined using the keyword class
Definition can be visualized as the mould for creating objects

Class definition consists of

1 A�ributes (Data members)

2 Functions (Methods)

Object Definition
>>> class ClassName:

Data members

.

.

.

Method definitions

Object Creation
>>> object = ClassName()

>>> class Student:

def init (self):

self.rollno = None

self.name = None

>>> s1 = Student()

>>> s1.rollno = 2

>>> s1.name = ‘Alice’

2

‘Alice’

s1

rollno

name

Sarath Babu Python Programming 8
th

August, 2019 13/24

Object Oriented Programming Methods

Constructor and methods

Constructor
Method (or function) used to initialize objects

Default name is init (self,. . .)

Method
Function associated with an object

First argument is always self (represents the calling object)

>>> class Point2D:

def init (self, x, y):

self.x = x

self.y = y

def display(self):

print (‘(%f, %f)’ % (self.x, self.y))

def xscale(self, k):

self.x = self.x * k

def yscale(self, k):

self.y = self.y * k

>>> p1 = Point2D(2, 3)

>>> p1.xscale(5)

>>> p1.display()

>>> p1.yscale(3)

>>> p1.display()

9

10

p1

y

x (10, 9)

Sarath Babu Python Programming 8
th

August, 2019 14/24

Object Oriented Programming Methods

Constructor and methods

Constructor
Method (or function) used to initialize objects

Default name is init (self,. . .)

Method
Function associated with an object

First argument is always self (represents the calling object)

>>> class Point2D:

def init (self, x, y):

self.x = x

self.y = y

def display(self):

print (‘(%f, %f)’ % (self.x, self.y))

def xscale(self, k):

self.x = self.x * k

def yscale(self, k):

self.y = self.y * k

>>> p1 = Point2D(2, 3)

>>> p1.xscale(5)

>>> p1.display()

>>> p1.yscale(3)

>>> p1.display()

9

10

p1

y

x (10, 9)

Sarath Babu Python Programming 8
th

August, 2019 14/24

Object Oriented Programming Class Variable

Class variable

Variable shared by objects of a class

Keyword self is not required
Modified using class name

Accessed using both class name and objects

>>> class Point2D:

pointCount = 0 # Class variable

def init (self, x, y):

self.x = x

self.y = y

def display(self):

print(‘(%f, %f)’ % (self.x, self.y))

def xscale(self, k):

self.x = self.x * k

def yscale(self, k):

self.y = self.y * k

>>> p1 = Point2D(2, 3)

>>> Point2D.pointCount += 1

>>> p2 = Point2D(1, 7)

>>> Point2D.pointCount += 1

>>> print (p1.pointCount)

>>> p3 = Point2D(4, 8)

>>> Point2D.pointCount += 1

>>> print (p1.pointCount)

>>> print (p3.pointCount)

>>> print (Point2D.pointCount)

Sarath Babu Python Programming 8
th

August, 2019 15/24

Object Oriented Programming Inheritance

Inheritance

Passing a�ributes/behavior from parent to o�spring

A class is derived (child, subclass) from existing class/classes

(parent, base class)

Key concept in code reusability
Enables to add additional features without modifying
existing class/classes

Reduces the e�ort in coding

Syntax
>>> class DerivedClass(ParentClass):

A�ribute definitions

.

.

.

Method definitions

Sarath Babu Python Programming 8
th

August, 2019 16/24

Object Oriented Programming Inheritance

Inheritance

Passing a�ributes/behavior from parent to o�spring

A class is derived (child, subclass) from existing class/classes

(parent, base class)

Key concept in code reusability
Enables to add additional features without modifying
existing class/classes

Reduces the e�ort in coding

Syntax
>>> class DerivedClass(ParentClass):

A�ribute definitions

.

.

.

Method definitions

Sarath Babu Python Programming 8
th

August, 2019 16/24

Object Oriented Programming Inheritance

Inheritance: 3D Point from 2D Point

>>> class Point2D: # Base class

def init (self, x, y):

self.x = x

self.y = y

def display(self):

print(‘(%f, %f)’ % (self.x, self.y))

def xscale(self, k):

self.x = self.x * k

def yscale(self, k):

self.y = self.y * k

>>> class Point3D(Point2D): # Derived class

def init (self, x, y, z):

Point2D. init (self, x, y)

self.z = z

def display(self): # Method overriding

print(‘(%f, %f, %f)’ % \
(self.x, self.y, self.z))

def zscale(self, k):

self.z = self.z * k

>>> ob1 = Point2D(1, 10)

>>> ob2 = Point3D(4, 5, 6)

>>> ob1.xscale(6)

>>> ob2.xscale(4)

>>> ob1.yscale(2)

>>> ob2.yscale(3)

>>> ob2.zscale(10)

>>> ob1.display()

>>> ob2.display()

Sarath Babu Python Programming 8
th

August, 2019 17/24

Object Oriented Programming Inheritance

Inheritance: 3D Point from 2D Point

>>> class Point2D: # Base class

def init (self, x, y):

self.x = x

self.y = y

def display(self):

print(‘(%f, %f)’ % (self.x, self.y))

def xscale(self, k):

self.x = self.x * k

def yscale(self, k):

self.y = self.y * k

>>> class Point3D(Point2D): # Derived class

def init (self, x, y, z):

Point2D. init (self, x, y)

self.z = z

def display(self): # Method overriding

print(‘(%f, %f, %f)’ % \
(self.x, self.y, self.z))

def zscale(self, k):

self.z = self.z * k

>>> ob1 = Point2D(1, 10)

>>> ob2 = Point3D(4, 5, 6)

>>> ob1.xscale(6)

>>> ob2.xscale(4)

>>> ob1.yscale(2)

>>> ob2.yscale(3)

>>> ob2.zscale(10)

>>> ob1.display()

>>> ob2.display()

Sarath Babu Python Programming 8
th

August, 2019 17/24

Object Oriented Programming Inheritance

Inheritance: 3D Point from 2D Point

>>> class Point2D: # Base class

def init (self, x, y):

self.x = x

self.y = y

def display(self):

print(‘(%f, %f)’ % (self.x, self.y))

def xscale(self, k):

self.x = self.x * k

def yscale(self, k):

self.y = self.y * k

>>> class Point3D(Point2D): # Derived class

def init (self, x, y, z):

Point2D. init (self, x, y)

self.z = z

def display(self): # Method overriding

print(‘(%f, %f, %f)’ % \
(self.x, self.y, self.z))

def zscale(self, k):

self.z = self.z * k

>>> ob1 = Point2D(1, 10)

>>> ob2 = Point3D(4, 5, 6)

>>> ob1.xscale(6)

>>> ob2.xscale(4)

>>> ob1.yscale(2)

>>> ob2.yscale(3)

>>> ob2.zscale(10)

>>> ob1.display()

>>> ob2.display()

Sarath Babu Python Programming 8
th

August, 2019 17/24

Object Oriented Programming Polymorphism

Polymorphism

Same name with di�erent meaning

‘name’ implies operator or method

1 Operator overloading

2 Function overloading

Operator overloading
>>> p1 = Point2D(2, 3)

>>> p2 = Point2D(1, 4)

Is it possible?
>>> p3 = p1 + p2

>>> class Point2D:

.

.

.

def add (self, p): # Definition for +

new x = self.x + p.x

new y = self.y + p.y

q = Point2D(new x, new y)

return q

>>> p1 = Point2D(2, 3)

>>> p2 = Point2D(1, 4)

>>> p3 = p1 + p2 # p3 = p1. add (p2)

Sarath Babu Python Programming 8
th

August, 2019 18/24

Object Oriented Programming Polymorphism

Polymorphism

Same name with di�erent meaning

‘name’ implies operator or method

1 Operator overloading

2 Function overloading

Operator overloading
>>> p1 = Point2D(2, 3)

>>> p2 = Point2D(1, 4)

Is it possible?
>>> p3 = p1 + p2

>>> class Point2D:

.

.

.

def add (self, p): # Definition for +

new x = self.x + p.x

new y = self.y + p.y

q = Point2D(new x, new y)

return q

>>> p1 = Point2D(2, 3)

>>> p2 = Point2D(1, 4)

>>> p3 = p1 + p2 # p3 = p1. add (p2)

Sarath Babu Python Programming 8
th

August, 2019 18/24

Object Oriented Programming Polymorphism

Polymorphism

Same name with di�erent meaning

‘name’ implies operator or method

1 Operator overloading

2 Function overloading

Operator overloading
>>> p1 = Point2D(2, 3)

>>> p2 = Point2D(1, 4)

Is it possible?
>>> p3 = p1 + p2

>>> class Point2D:

.

.

.

def add (self, p): # Definition for +

new x = self.x + p.x

new y = self.y + p.y

q = Point2D(new x, new y)

return q

>>> p1 = Point2D(2, 3)

>>> p2 = Point2D(1, 4)

>>> p3 = p1 + p2 # p3 = p1. add (p2)

Sarath Babu Python Programming 8
th

August, 2019 18/24

Object Oriented Programming Polymorphism

Polymorphism

Same name with di�erent meaning

‘name’ implies operator or method

1 Operator overloading

2 Function overloading

Operator overloading
>>> p1 = Point2D(2, 3)

>>> p2 = Point2D(1, 4)

Is it possible?
>>> p3 = p1 + p2

>>> class Point2D:

.

.

.

def add (self, p): # Definition for +

new x = self.x + p.x

new y = self.y + p.y

q = Point2D(new x, new y)

return q

>>> p1 = Point2D(2, 3)

>>> p2 = Point2D(1, 4)

>>> p3 = p1 + p2 # p3 = p1. add (p2)

Sarath Babu Python Programming 8
th

August, 2019 18/24

Object Oriented Programming Polymorphism

Polymorphic functions

Functions that execute irrespective of the type of its input

If all of the operations inside the function can be applied to the

type, the function can be applied to the type.
a

a
Je�rey Elkner, Allen B Downey, and Chris Meyers. How to Think Like a Computer Scientist, Learning with Python. 2002.

Polymorphic?
>>> def add str(a, b):

p = str(a) + str(b)

return p

Polymorphic?
>>> def add str(a, b):

p = a + b

return str(p)

Sarath Babu Python Programming 8
th

August, 2019 19/24

Object Oriented Programming Polymorphism

Polymorphic functions

Functions that execute irrespective of the type of its input

If all of the operations inside the function can be applied to the

type, the function can be applied to the type.
a

a
Je�rey Elkner, Allen B Downey, and Chris Meyers. How to Think Like a Computer Scientist, Learning with Python. 2002.

Polymorphic?
>>> def add str(a, b):

p = str(a) + str(b)

return p

Polymorphic?
>>> def add str(a, b):

p = a + b

return str(p)

Sarath Babu Python Programming 8
th

August, 2019 19/24

Object Oriented Programming Polymorphism

Polymorphic functions

Functions that execute irrespective of the type of its input

If all of the operations inside the function can be applied to the

type, the function can be applied to the type.
a

a
Je�rey Elkner, Allen B Downey, and Chris Meyers. How to Think Like a Computer Scientist, Learning with Python. 2002.

Polymorphic?
>>> def add str(a, b):

p = str(a) + str(b)

return p

Polymorphic?
>>> def add str(a, b):

p = a + b

return str(p)

Sarath Babu Python Programming 8
th

August, 2019 19/24

Object Oriented Programming Abstraction

Data abstraction

Restricting the data member access

Only methods can access or modify the data member

Names of data members start with

>>> class Point2D:

def init (self, x, y):

self. x = x

self.y = y

def display(self):

print(‘(%f, %f)’ % (self. x, self.y))

def xscale(self, k):

self. x = self. x * k

def yscale(self, k):

self.y = self.y * k

>>> p1 = Point2D()

>>> p1. x = p1. x * 3

>>> p1.y = p1.y * 4

>>> p1.xscale(3)

>>> p1.display()

Sarath Babu Python Programming 8
th

August, 2019 20/24

Object Oriented Programming Abstraction

Data abstraction

Restricting the data member access

Only methods can access or modify the data member

Names of data members start with

>>> class Point2D:

def init (self, x, y):

self. x = x

self.y = y

def display(self):

print(‘(%f, %f)’ % (self. x, self.y))

def xscale(self, k):

self. x = self. x * k

def yscale(self, k):

self.y = self.y * k

>>> p1 = Point2D()

>>> p1. x = p1. x * 3

>>> p1.y = p1.y * 4

>>> p1.xscale(3)

>>> p1.display()

Sarath Babu Python Programming 8
th

August, 2019 20/24

Object Oriented Programming Abstraction

Data abstraction

Restricting the data member access

Only methods can access or modify the data member

Names of data members start with

>>> class Point2D:

def init (self, x, y):

self. x = x

self.y = y

def display(self):

print(‘(%f, %f)’ % (self. x, self.y))

def xscale(self, k):

self. x = self. x * k

def yscale(self, k):

self.y = self.y * k

>>> p1 = Point2D()

>>> p1. x = p1. x * 3

>>> p1.y = p1.y * 4

>>> p1.xscale(3)

>>> p1.display()

Sarath Babu Python Programming 8
th

August, 2019 20/24

Object Oriented Programming

“The problem with object-oriented languages is they’ve got all this implicit

environment that they carry around with them. You wanted a banana but what you

got was a gorilla holding the banana and the entire jungle.” – Joe Armstrong

Sarath Babu Python Programming 8
th

August, 2019 21/24

Modules Introduction

Creating modules

Program can be split into functions, defined in separate files

Easy maintenance

Functions made available using import statement

calc.py

def add(a, b):

return a + b

def subtract(a, b):

return a - b

>>> import calc

>>> a = calc.add(2, 3)

>>> b = calc.subtract(5, 2)

>>> print (a, b)

>>> import calc as cl

>>> a = cl.add(2, 3)

>>> b = cl.subtract(5, 2)

>>> print (a, b)

>>> from calc import *

>>> a = add(2, 3)

>>> b = subtract(5, 2)

>>> print (a, b)

Sarath Babu Python Programming 8
th

August, 2019 22/24

Modules Introduction

Creating modules

Program can be split into functions, defined in separate files

Easy maintenance

Functions made available using import statement

calc.py

def add(a, b):

return a + b

def subtract(a, b):

return a - b

>>> import calc

>>> a = calc.add(2, 3)

>>> b = calc.subtract(5, 2)

>>> print (a, b)

>>> import calc as cl

>>> a = cl.add(2, 3)

>>> b = cl.subtract(5, 2)

>>> print (a, b)

>>> from calc import *

>>> a = add(2, 3)

>>> b = subtract(5, 2)

>>> print (a, b)

Sarath Babu Python Programming 8
th

August, 2019 22/24

Modules Introduction

Creating modules

Program can be split into functions, defined in separate files

Easy maintenance

Functions made available using import statement

calc.py

def add(a, b):

return a + b

def subtract(a, b):

return a - b

>>> import calc

>>> a = calc.add(2, 3)

>>> b = calc.subtract(5, 2)

>>> print (a, b)

>>> import calc as cl

>>> a = cl.add(2, 3)

>>> b = cl.subtract(5, 2)

>>> print (a, b)

>>> from calc import *

>>> a = add(2, 3)

>>> b = subtract(5, 2)

>>> print (a, b)

Sarath Babu Python Programming 8
th

August, 2019 22/24

�estions?

sarath.babu.2014@ieee.org

Thank you.

	Control Structures
	Decision Making
	Iteration

	Functions
	Functions
	Introduction

	Exceptions
	

	File Handling
	Introduction
	Input/Output

	Object Oriented Programming
	Introduction
	Methods
	Class Variable
	Inheritance
	Polymorphism
	Abstraction
	

	Modules
	Introduction

